The Breast Cancer Diagnostic data is available on the UCI Machine Learning Repository. This database is also available through the UW CS ftp server.
Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. n the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34].
Attribute Information:
Ten real-valued features are computed for each cell nucleus:
The mean, standard error and "worst" or largest (mean of the three largest values) of these features were computed for each image, resulting in 30 features. For instance, field 3 is Mean Radius, field 13 is Radius SE, field 23 is Worst Radius.
All feature values are recoded with four significant digits.
Missing attribute values: none
Class distribution: 357 benign, 212 malignant
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use('seaborn')
import time
data = pd.read_csv('data.csv')
data.head()
id | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | compactness_mean | concavity_mean | concave points_mean | ... | texture_worst | perimeter_worst | area_worst | smoothness_worst | compactness_worst | concavity_worst | concave points_worst | symmetry_worst | fractal_dimension_worst | Unnamed: 32 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 842302 | M | 17.99 | 10.38 | 122.80 | 1001.0 | 0.11840 | 0.27760 | 0.3001 | 0.14710 | ... | 17.33 | 184.60 | 2019.0 | 0.1622 | 0.6656 | 0.7119 | 0.2654 | 0.4601 | 0.11890 | NaN |
1 | 842517 | M | 20.57 | 17.77 | 132.90 | 1326.0 | 0.08474 | 0.07864 | 0.0869 | 0.07017 | ... | 23.41 | 158.80 | 1956.0 | 0.1238 | 0.1866 | 0.2416 | 0.1860 | 0.2750 | 0.08902 | NaN |
2 | 84300903 | M | 19.69 | 21.25 | 130.00 | 1203.0 | 0.10960 | 0.15990 | 0.1974 | 0.12790 | ... | 25.53 | 152.50 | 1709.0 | 0.1444 | 0.4245 | 0.4504 | 0.2430 | 0.3613 | 0.08758 | NaN |
3 | 84348301 | M | 11.42 | 20.38 | 77.58 | 386.1 | 0.14250 | 0.28390 | 0.2414 | 0.10520 | ... | 26.50 | 98.87 | 567.7 | 0.2098 | 0.8663 | 0.6869 | 0.2575 | 0.6638 | 0.17300 | NaN |
4 | 84358402 | M | 20.29 | 14.34 | 135.10 | 1297.0 | 0.10030 | 0.13280 | 0.1980 | 0.10430 | ... | 16.67 | 152.20 | 1575.0 | 0.1374 | 0.2050 | 0.4000 | 0.1625 | 0.2364 | 0.07678 | NaN |
5 rows × 33 columns
col = data.columns
print(col)
Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean', 'smoothness_mean', 'compactness_mean', 'concavity_mean', 'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean', 'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se', 'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst', 'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst', 'Unnamed: 32'], dtype='object')
y = data.diagnosis
drop_cols = ['Unnamed: 32','id','diagnosis']
x = data.drop(drop_cols,axis = 1 )
x.head()
radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | compactness_mean | concavity_mean | concave points_mean | symmetry_mean | fractal_dimension_mean | ... | radius_worst | texture_worst | perimeter_worst | area_worst | smoothness_worst | compactness_worst | concavity_worst | concave points_worst | symmetry_worst | fractal_dimension_worst | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 17.99 | 10.38 | 122.80 | 1001.0 | 0.11840 | 0.27760 | 0.3001 | 0.14710 | 0.2419 | 0.07871 | ... | 25.38 | 17.33 | 184.60 | 2019.0 | 0.1622 | 0.6656 | 0.7119 | 0.2654 | 0.4601 | 0.11890 |
1 | 20.57 | 17.77 | 132.90 | 1326.0 | 0.08474 | 0.07864 | 0.0869 | 0.07017 | 0.1812 | 0.05667 | ... | 24.99 | 23.41 | 158.80 | 1956.0 | 0.1238 | 0.1866 | 0.2416 | 0.1860 | 0.2750 | 0.08902 |
2 | 19.69 | 21.25 | 130.00 | 1203.0 | 0.10960 | 0.15990 | 0.1974 | 0.12790 | 0.2069 | 0.05999 | ... | 23.57 | 25.53 | 152.50 | 1709.0 | 0.1444 | 0.4245 | 0.4504 | 0.2430 | 0.3613 | 0.08758 |
3 | 11.42 | 20.38 | 77.58 | 386.1 | 0.14250 | 0.28390 | 0.2414 | 0.10520 | 0.2597 | 0.09744 | ... | 14.91 | 26.50 | 98.87 | 567.7 | 0.2098 | 0.8663 | 0.6869 | 0.2575 | 0.6638 | 0.17300 |
4 | 20.29 | 14.34 | 135.10 | 1297.0 | 0.10030 | 0.13280 | 0.1980 | 0.10430 | 0.1809 | 0.05883 | ... | 22.54 | 16.67 | 152.20 | 1575.0 | 0.1374 | 0.2050 | 0.4000 | 0.1625 | 0.2364 | 0.07678 |
5 rows × 30 columns
sns.set(style="whitegrid", palette="muted")
ax = sns.countplot(x=y,label="Count")
B, M = y.value_counts()
print('Number of Benign: ',B)
print('Number of Malignant : ',M)
Number of Benign: 357 Number of Malignant : 212
x.describe()
radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_mean | compactness_mean | concavity_mean | concave points_mean | symmetry_mean | fractal_dimension_mean | ... | radius_worst | texture_worst | perimeter_worst | area_worst | smoothness_worst | compactness_worst | concavity_worst | concave points_worst | symmetry_worst | fractal_dimension_worst | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | ... | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 | 569.000000 |
mean | 14.127292 | 19.289649 | 91.969033 | 654.889104 | 0.096360 | 0.104341 | 0.088799 | 0.048919 | 0.181162 | 0.062798 | ... | 16.269190 | 25.677223 | 107.261213 | 880.583128 | 0.132369 | 0.254265 | 0.272188 | 0.114606 | 0.290076 | 0.083946 |
std | 3.524049 | 4.301036 | 24.298981 | 351.914129 | 0.014064 | 0.052813 | 0.079720 | 0.038803 | 0.027414 | 0.007060 | ... | 4.833242 | 6.146258 | 33.602542 | 569.356993 | 0.022832 | 0.157336 | 0.208624 | 0.065732 | 0.061867 | 0.018061 |
min | 6.981000 | 9.710000 | 43.790000 | 143.500000 | 0.052630 | 0.019380 | 0.000000 | 0.000000 | 0.106000 | 0.049960 | ... | 7.930000 | 12.020000 | 50.410000 | 185.200000 | 0.071170 | 0.027290 | 0.000000 | 0.000000 | 0.156500 | 0.055040 |
25% | 11.700000 | 16.170000 | 75.170000 | 420.300000 | 0.086370 | 0.064920 | 0.029560 | 0.020310 | 0.161900 | 0.057700 | ... | 13.010000 | 21.080000 | 84.110000 | 515.300000 | 0.116600 | 0.147200 | 0.114500 | 0.064930 | 0.250400 | 0.071460 |
50% | 13.370000 | 18.840000 | 86.240000 | 551.100000 | 0.095870 | 0.092630 | 0.061540 | 0.033500 | 0.179200 | 0.061540 | ... | 14.970000 | 25.410000 | 97.660000 | 686.500000 | 0.131300 | 0.211900 | 0.226700 | 0.099930 | 0.282200 | 0.080040 |
75% | 15.780000 | 21.800000 | 104.100000 | 782.700000 | 0.105300 | 0.130400 | 0.130700 | 0.074000 | 0.195700 | 0.066120 | ... | 18.790000 | 29.720000 | 125.400000 | 1084.000000 | 0.146000 | 0.339100 | 0.382900 | 0.161400 | 0.317900 | 0.092080 |
max | 28.110000 | 39.280000 | 188.500000 | 2501.000000 | 0.163400 | 0.345400 | 0.426800 | 0.201200 | 0.304000 | 0.097440 | ... | 36.040000 | 49.540000 | 251.200000 | 4254.000000 | 0.222600 | 1.058000 | 1.252000 | 0.291000 | 0.663800 | 0.207500 |
8 rows × 30 columns
data_dia = y
data = x
data_n_2 = (data - data.mean()) / (data.std())
data = pd.concat([y,data_n_2.iloc[:,0:10]],axis=1)
data = pd.melt(data,id_vars="diagnosis",
var_name="features",
value_name='value')
plt.figure(figsize=(10,10))
sns.violinplot(x="features", y="value", hue="diagnosis", data=data,split=True, inner="quart")
plt.xticks(rotation=45);
data = pd.concat([y,data_n_2.iloc[:,10:20]],axis=1)
data = pd.melt(data,id_vars="diagnosis",
var_name="features",
value_name='value')
plt.figure(figsize=(10,10))
sns.violinplot(x="features", y="value", hue="diagnosis", data=data,split=True, inner="quart")
plt.xticks(rotation=45);
data = pd.concat([y,data_n_2.iloc[:,20:31]],axis=1)
data = pd.melt(data,id_vars="diagnosis",
var_name="features",
value_name='value')
plt.figure(figsize=(10,10))
sns.violinplot(x="features", y="value", hue="diagnosis", data=data,split=True, inner="quart")
plt.xticks(rotation=45);
plt.figure(figsize=(10,10))
sns.boxplot(x="features", y="value", hue="diagnosis", data=data)
plt.xticks(rotation=45);
sns.jointplot(x=x.loc[:,'concavity_worst'],
y=x.loc[:,'concave points_worst'],
kind="reg",
);
sns.set(style="whitegrid", palette="muted")
data_dia = y
data = x
data_n_2 = (data - data.mean()) / (data.std())
data = pd.concat([y,data_n_2.iloc[:,0:10]],axis=1)
data = pd.melt(data,id_vars="diagnosis",
var_name="features",
value_name='value')
plt.figure(figsize=(20,10))
sns.swarmplot(x="features", y="value", hue="diagnosis", size=2, data=data)
plt.xticks(rotation=45);
data = pd.concat([y,data_n_2.iloc[:,10:20]],axis=1)
data = pd.melt(data,id_vars="diagnosis",
var_name="features",
value_name='value')
plt.figure(figsize=(20,10))
sns.swarmplot(x="features", y="value", hue="diagnosis", size=2, data=data)
plt.xticks(rotation=45);
/opt/anaconda3/envs/tf2/lib/python3.7/site-packages/seaborn/categorical.py:1296: UserWarning: 7.0% of the points cannot be placed; you may want to decrease the size of the markers or use stripplot. warnings.warn(msg, UserWarning)
data = pd.concat([y,data_n_2.iloc[:,20:31]],axis=1)
data = pd.melt(data,id_vars="diagnosis",
var_name="features",
value_name='value')
plt.figure(figsize=(20,10))
sns.swarmplot(x="features", y="value", hue="diagnosis", size=2, data=data)
plt.xticks(rotation=45);
#correlation map
f,ax = plt.subplots(figsize=(18, 18))
sns.heatmap(x.corr(), annot=True, linewidths=.5, fmt= '.1f', cmap='BuPu', ax=ax);
drop_cols = ['perimeter_mean','radius_mean','compactness_mean',
'concave points_mean','radius_se','perimeter_se',
'radius_worst','perimeter_worst','compactness_worst',
'concave points_worst','compactness_se','concave points_se',
'texture_worst','area_worst']
df = x.drop(drop_cols, axis=1)
df.head()
texture_mean | area_mean | smoothness_mean | concavity_mean | symmetry_mean | fractal_dimension_mean | texture_se | area_se | smoothness_se | concavity_se | symmetry_se | fractal_dimension_se | smoothness_worst | concavity_worst | symmetry_worst | fractal_dimension_worst | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10.38 | 1001.0 | 0.11840 | 0.3001 | 0.2419 | 0.07871 | 0.9053 | 153.40 | 0.006399 | 0.05373 | 0.03003 | 0.006193 | 0.1622 | 0.7119 | 0.4601 | 0.11890 |
1 | 17.77 | 1326.0 | 0.08474 | 0.0869 | 0.1812 | 0.05667 | 0.7339 | 74.08 | 0.005225 | 0.01860 | 0.01389 | 0.003532 | 0.1238 | 0.2416 | 0.2750 | 0.08902 |
2 | 21.25 | 1203.0 | 0.10960 | 0.1974 | 0.2069 | 0.05999 | 0.7869 | 94.03 | 0.006150 | 0.03832 | 0.02250 | 0.004571 | 0.1444 | 0.4504 | 0.3613 | 0.08758 |
3 | 20.38 | 386.1 | 0.14250 | 0.2414 | 0.2597 | 0.09744 | 1.1560 | 27.23 | 0.009110 | 0.05661 | 0.05963 | 0.009208 | 0.2098 | 0.6869 | 0.6638 | 0.17300 |
4 | 14.34 | 1297.0 | 0.10030 | 0.1980 | 0.1809 | 0.05883 | 0.7813 | 94.44 | 0.011490 | 0.05688 | 0.01756 | 0.005115 | 0.1374 | 0.4000 | 0.2364 | 0.07678 |
f, ax = plt.subplots(figsize=(14,14))
sns.heatmap(df.corr(), annot=True, linewidth=.5, fmt='.1f', cmap='BuPu', ax=ax);
from sklearn.model_selection import train_test_split
import xgboost as xgb
from sklearn.metrics import f1_score,confusion_matrix
from sklearn.metrics import accuracy_score
x_train, x_test, y_train, y_test = train_test_split(df, y, test_size=.3, random_state=42)
clf_1 = xgb.XGBClassifier(random_state=42)
cl_1 = clf_1.fit(x_train, y_train)
print('Accuracy is: ', accuracy_score(y_test, clf_1.predict(x_test)))
cm = confusion_matrix(y_test, clf_1.predict(x_test))
sns.heatmap(cm, annot=True, fmt='d', cmap='BuPu');
Accuracy is: 0.9766081871345029
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
select_feature = SelectKBest(chi2, k=10).fit(x_train, y_train)
print('Score List: ', select_feature.scores_)
print('Feature List: ', x_train.columns)
Score List: [6.06916433e+01 3.66899557e+04 1.00015175e-01 1.30547650e+01 1.95982847e-01 3.42575072e-04 4.07131026e-02 6.12741067e+03 1.32470372e-03 6.92896719e-01 1.39557806e-03 2.65927071e-03 2.63226314e-01 2.58858117e+01 1.00635138e+00 1.23087347e-01] Feature List: Index(['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'fractal_dimension_mean', 'texture_se', 'area_se', 'smoothness_se', 'concavity_se', 'symmetry_se', 'fractal_dimension_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'], dtype='object')
x_train_2 = select_feature.transform(x_train)
x_test_2 = select_feature.transform(x_test)
clf_2 = xgb.XGBClassifier().fit(x_train_2, y_train)
print('Accuracy is ', accuracy_score(y_test, clf_2.predict(x_test_2)))
cm_2 = confusion_matrix(y_test, clf_2.predict(x_test_2))
sns.heatmap(cm_2, annot=True, fmt='d', cmap='BuPu')
Accuracy is 0.9707602339181286
<AxesSubplot:>
from sklearn.feature_selection import RFECV
clf_3 = xgb.XGBClassifier()
rfecv = RFECV(estimator=clf_3, step=1, cv=5, scoring='accuracy', n_jobs=1).fit(x_train, y_train)
print('Optimal number of features: ', rfecv.n_features_)
print('Best features: ', x_train.columns[rfecv.support_])
Optimal number of features: 16 Best features: Index(['texture_mean', 'area_mean', 'smoothness_mean', 'concavity_mean', 'symmetry_mean', 'fractal_dimension_mean', 'texture_se', 'area_se', 'smoothness_se', 'concavity_se', 'symmetry_se', 'fractal_dimension_se', 'smoothness_worst', 'concavity_worst', 'symmetry_worst', 'fractal_dimension_worst'], dtype='object')
print('Accuracy is: ', accuracy_score(y_test, rfecv.predict(x_test)))
Accuracy is: 0.9766081871345029
num_features = [i for i in range(1, len(rfecv.grid_scores_) + 1)]
cv_scores = rfecv.grid_scores_
ax = sns.lineplot(x=num_features, y=cv_scores)
ax.set(xlabel='No. of selected features', ylabel='CV scores')
[Text(0.5, 0, 'No. of selected features'), Text(0, 0.5, 'CV scores')]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=42)
x_train_norm = (x_train - x_train.mean())/(x_train.max() - x_train.min())
x_test_norm = (x_test - x_test.mean())/(x_test.max() - x_test.min())
from sklearn.decomposition import PCA
pca = PCA()
pca.fit(x_train_norm)
plt.figure(1, figsize=(10,8))
sns.lineplot(data=np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('No. of components')
Text(0.5, 0, 'No. of components')